- Sea la función real f(x) = a log_b (x + 1), con a un número real distinto de cero y b un número real positivo y distinto de 1. Entonces, siempre es verdadero que
 - A) el dominio de f es el intervalo $]0, +\infty[$.
 - B) el recorrido de f son todos los reales.
 - C) si b > 1, entonces la función es creciente.
 - D) si a < 0, entonces la función es decreciente.</p>
 - E) si a < 0 y 0 < b < 1, entonces la función es creciente.</p>

del enunciado a er- (o) b>1 f(x)=-a.loyb(x+1)

-en la función (-a) prele
Ser postrio o regardo

-b) prede ser racional menor

a 1

1) no, ya pre, enclargemento esta (X+1) por lo que trere un sesplazamiento macia la 13 querda, Sin importar a y is

- 1) Sea la función real $f(x) = -a \cdot \log_b(x+1)$, con **a** un número real distinto de cero y **b** un número real positivo y distinto de 1. Entonces, **siempre** es verdadero que
 - A) el dominio de f es el intervalo 10, + ∞[.
 - B) el recorrido de f son todos los reales.
 - C) si b > 1, entonces la función es creciente.
 - D) si a < 0, entonces la función es decreciente.</p>
 - E) si a < 0 y 0 < b < 1, entonces la función es creciente.

B) Si, pa que, sin importar los desparamento y si la función crece o decrece,

C) Mu bare major à mo nos indica que la finción es creciente, pero como (-a) per ser negativo prese transformata en decreciente

1) SI aco, (-a) es positiva, por lo que no apeta la monotoria de la finación, pero 6 prese ser mayor a 1, de ser axi fixi seria creciente.

- Sea la función real f(x) = -a log_b (x + 1), con a un número real distinto de cero y b un número real positivo y distinto de 1. Entonces, siempre es verdadero que
 - A) el dominio de f es el intervalo]0, + ∞[.
 - B) el recorrido de f son todos los reales.
 - C) si b > 1, entonces la función es creciente.
 - D) si a < 0, entonces la función es decreciente.
 - E) si a < 0 y 0 < b < 1, entonces la función es creciente.

E) esta alternativa nos dice que fix) podra ser $f(x) = -(-2) \cdot log_1(x+1)$ mantière la monotomia $f(x) = 2 \cdot loy_{\frac{1}{2}}(x+1)$ lay1(X+1) es duccreme yaye la bax es 0 < \frac{1}{2} \left\ 1

- 2) Si $g(x) = \log_2 x$ es una función real, entonces la expresión (g(32) g(16)) es igual a
 - A) 1
 - B) 4
 - C) 8
 - D) 16
 - E) ninguno de los valores anteriores.

$$g(32) = Loy_2^{32} = 5$$

Según la función real
$$f(x) = \log_3 x + 1$$
, ¿cuál es el valor de $f\left(\frac{1}{9}\right) \cdot f(27)$?

A) -4B) -2

C) 2

E) 6

$$f(\frac{1}{9}) = \log_3 \frac{1}{9} + 1$$

= -2 + 1

Importante: el +1 no pertencie al argumento, pari que partenezar aubre 50e lay, (X+1).

$$f(27) = \log_3 27 + 1$$

$$= 3 + 1$$

$$= 4$$

4) Si
$$f(x) = \log_4 x$$
 es una función real, entonces $(f(1) - f(256))$ es igual a

$$C) - 4$$

$$f(1) = loy_4 = 0$$

 $f(256) = log_4 = 4$

$$f(256) = log_4 = 4$$

$$f(256) = log_4 = 4$$

$$(f(1) - f(256))$$

- Sea la función $f(x) = \log x$, con x un número real positivo. ¿Para qué valor(es) de a se cumple la igualdad f(2a + 1) = f(1 - 10a) - f(5)?

Kesowemos

Para ningún valor real de a.

$$f(2a+1)=f(1-10a)-f(s)$$

$$log(2a+1) = log(1-10a) - log 5$$
 $log(2a+1) = log (1-10a) - log 5$
 $log(2a+1) = log (1-10a)$
 $log(2a+1) = log (1-10a)$
 $log(2a+1) = log (1-10a)$

$$2a+1 = \frac{1-10a}{5}$$

$$5(20+1) = 1-100$$

 $400 + 5 = 1-100$
 $100 + 100 = 1-5$
 $200 = -4$

$$\Lambda = \frac{-4}{20} \implies \Lambda = -\frac{1}{5}$$

Correcta

6) Sea la función real f(x) = log₁₁ x + log 100. ¿Cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

I)
$$f(11) = 3$$

II) El dominio de f son los reales positivos.

III) 4 pertenece al recorrido de f.

A) Solo I

B) Solo II

C) Solo III

D) Solo II y III

E) I, II y III

$$f(x) = lay_{11} \times + lay_{100}$$

 $f(x) = lay_{11} \times + 2$

1)
$$f(11) = \log_{11} 11 + 2$$
$$f(11) = 1 + 2$$
$$f(11) = 3 / 3 = 3$$

11) la praion notiene transhciono, horizontales, por lo que el dominio no cambia.

$$4 = \log_{11} \times + 2$$

$$2 = \log_{11} \times / \exp$$

$$11^2 = 11 \log_{11} \times$$

$$121 = \times$$

 $D \int (121) = log_{M} 121 + 2$ $\int (121) = 2 + 2$ $\therefore 4 \text{ perfonce al perollido}$

1)
$$f\left(\frac{-1}{2}\right) = -1$$

1)
$$f(\frac{-1}{2}) = \log_2(\frac{-1}{2} + 1)$$

= $\log_2(\frac{1}{2})$

Este ex se intersecta cumbo

$$X=0$$

walvamor

 $f(0) = log_2(0+1)$
 $f(0) = log_2 =$

Correcta

111) la base del 1 ogaritmo es mayor a 1, y ningún humero mutiplica al logaritmo, por lo que es crevente

:. Si intersecta en el (0,0)

Correta

I)
$$f(0.25) = -1$$

II) El gráfico de la función intersecta al eje de las abscisas en (1, 0).

III) El recorrido de la función es el conjunto IR.

A) Solo I

B) Solo I y II

C) Solo I y III

D) Solo II y III

E) I, II y III

1)
$$f(\frac{1}{4}) = \log_4 \frac{1}{4}$$

 $f(\frac{1}{4}) = -2$

11) (x,y)=(1,0) veremos si el punto pertenece

III) El recorrido es R ya que, la punción puede tomure valores positivos, regativos y el coro,

$$h(x) = f(g(x))$$

$$h(x) = f(x^{2})$$

$$h(x) = log x^{2}$$

$$h(x) = 2 log x$$

Reiordomos que en el argumento debe ser X>0, y el 2 no afecta al Dom. de la función. Así, el Dom. seria R-203 Correcta

Sea la función $f(x) = \log_a(ax) + \log_{\frac{1}{a}}x$, con **a** un número real positivo distinto de 1. ¿Cuál(es) de las siguientes afirmaciones es (son) correcta(s)?

I) f solo está definida en los reales positivos.

II) f es creciente para x > 1.

III) f(x) = -f(x) para todo x > 0

A) Solo I

B) Solo II

C) Solo III

D) Solo I y II

E) I, II y III

$$f(x) = \log \alpha + \log x + \log x$$

$$f(x) = 1 + \log x + \log x$$

$$f(x) = 1 + \log x + \frac{\log x}{\log x}$$

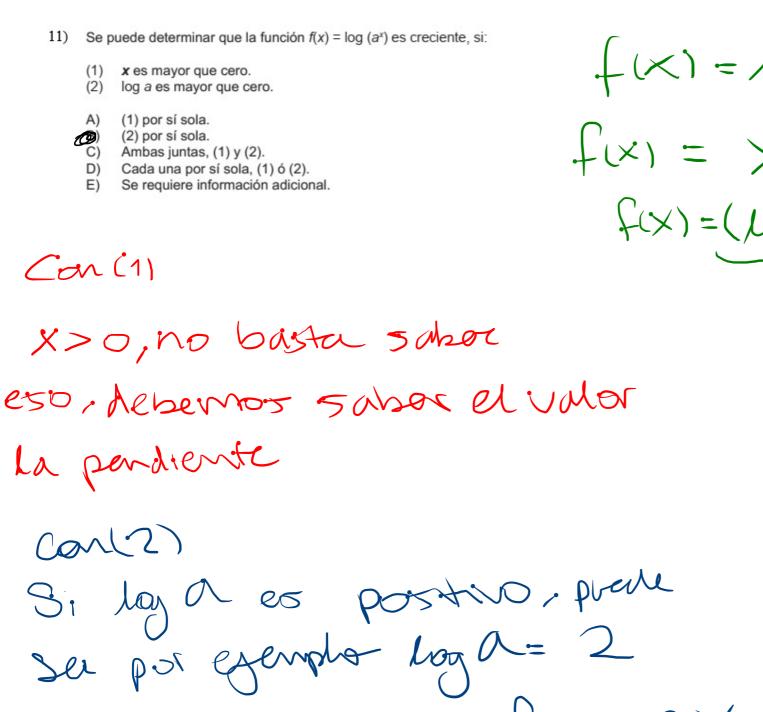
$$f(x) = 1 + \log x + \frac{\log x}{\log x}$$

$$f(x) = 1 + \log x + \frac{\log x}{\log x}$$

$$f(x) = 1 + \log x + \frac{\log x}{-1}$$

$$f(x) = 1 + \log x + \frac{\log x}{-1}$$

. La farison los la forción es



+(x) = log OC fix) = x loga $f(x) = (log(x)) \times$ Correcta lo aval gredation fix=2X la cual es créciente

Sea la función real
$$g(x) = \log \left(\frac{x+b}{b}\right)$$
, con \mathbf{x} y \mathbf{b} números reales positivos. Es posible determinar el valor numérico de $g(a)$, si:

(1) $a+b=200$

(2)
$$\frac{a}{b} = 99$$

A) (1) por sí sola

C) Ambas juntas, (1) y (2).

- D) Cada una por sí sola, (1) ó (2)
- E) Se requiere información adicional.

(on (1)

$$a+b=200$$

 $a=200-b$
 $g(x) = log(200-b+b) - log(x)$

 $= log^{200} - log b$ $= log^{2.100} - log b$ $= log^{2} + log^{100} - log b$ $= log^{2} + 2 - log^{5}$ No 5 aberros el Valor de b

posible determinar
$$g(x) = log(x+b)$$

$$g(x) = log(x+b) - log b$$

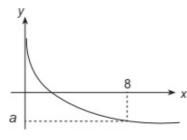
Con(2) a = 99 a = 996 g(a) = log 196

g(a) = loy (49b+b) - loy b g(a) = loy 100b - log b $g(a) = loy \frac{100b}{b}$ g(a) = loy 100 g(a) = 2

correctal

(8) = A

- A) -3
- B) -2
- $\frac{C}{2}$
 - D) $\frac{-2}{3}$
 - E) $\frac{-1}{2}$



la gratica not muestra el punto (8, a)

Por la tanto debaras evaluar £(8)

f(8) = loyy 4. ½

f(8) = loyy 4. ½

logy 4 + loyy ½

- 1 + loyy 14 -

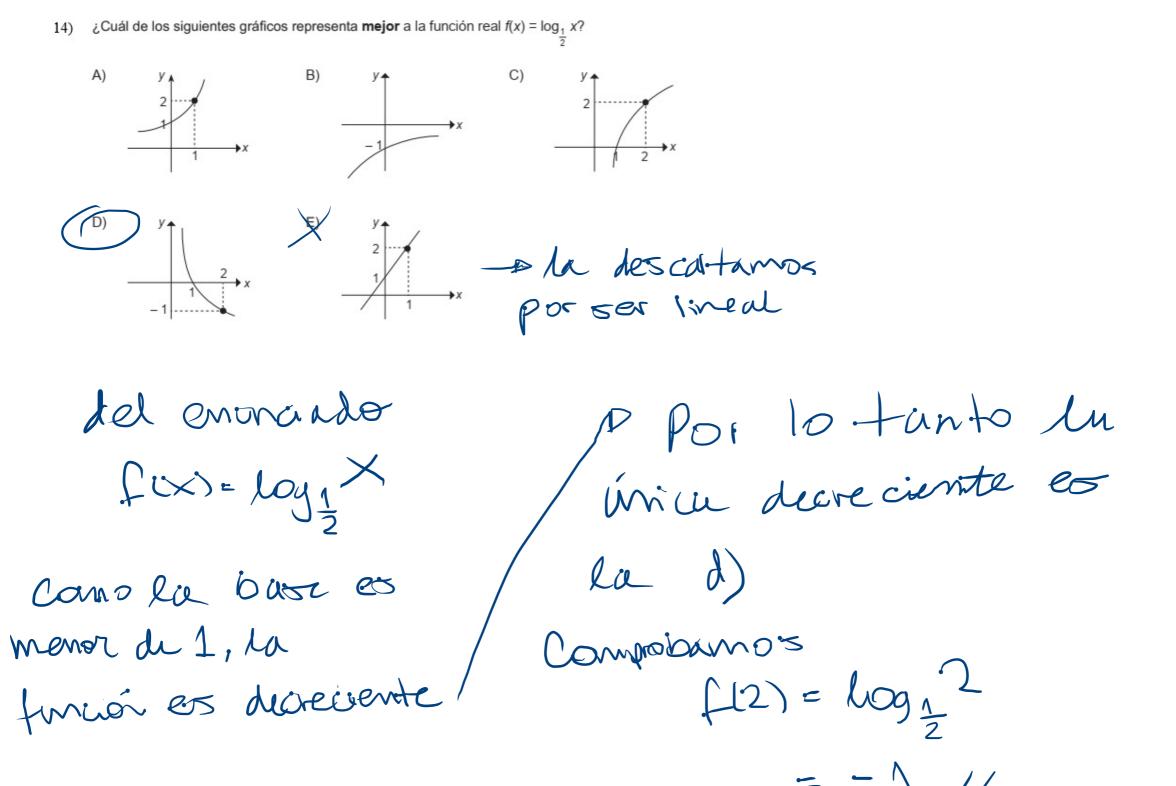
$$-1 + \frac{1}{2} \log_{1} \frac{\pi}{4}$$

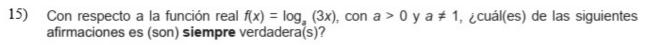
$$-1 + \frac{1}{2} \cdot -1$$

$$-1 - \frac{1}{2}$$

$$0$$

- 3 // Corre





- I) Su representación gráfica es asintótica al eje de las ordenadas.
- II) Si a < 1, es una función decreciente.
- III) El punto (1, 0) pertenece al gráfico asociado a la función.

A) Solo I

B) Solo II (C) Solo I y II

D) Solo I y III

E) Solo II y III

fix) = loga 3x = loga 3 + loga X

1) la forción al no tener translaciones horizontales lu asintota es el est 11) 3; a<2, la fración prede 5er fox-log_3X es decreciente por la base.

> Correcta (C)

111) Si far: lay 3 = 0 x = 3 × lo cual no predeser por lo tanto er punto (1,0) no pertene al grápico

16)	La cantidad de individuos de una especie de hongo aumenta de tal manera que cada minuto hay
	un 10% más de individuos que en el minuto anterior. Si en una muestra inicialmente había 50
	individuos y luego de t minutos había x individuos, la función que representa a t en términos de x
	es

A)	$t(x) = 50 \cdot (1,1)^x$

B)	t(x) =	$(5,5)^{3}$

C)
$$t(x) = \log\left(\frac{x}{5,5}\right)$$

$$D) t(x) = \frac{\log x}{\log (5,5)}$$

(E)
$$t(x) = \frac{\log\left(\frac{x}{50}\right)}{\log(1,1)}$$

	MINITOS	Non902
\int	0	20
ı	A	

Lulyo

$$\frac{x}{50} = 11^{t}$$

las

$$\log \frac{x}{50} = \log 1.1^{t}$$

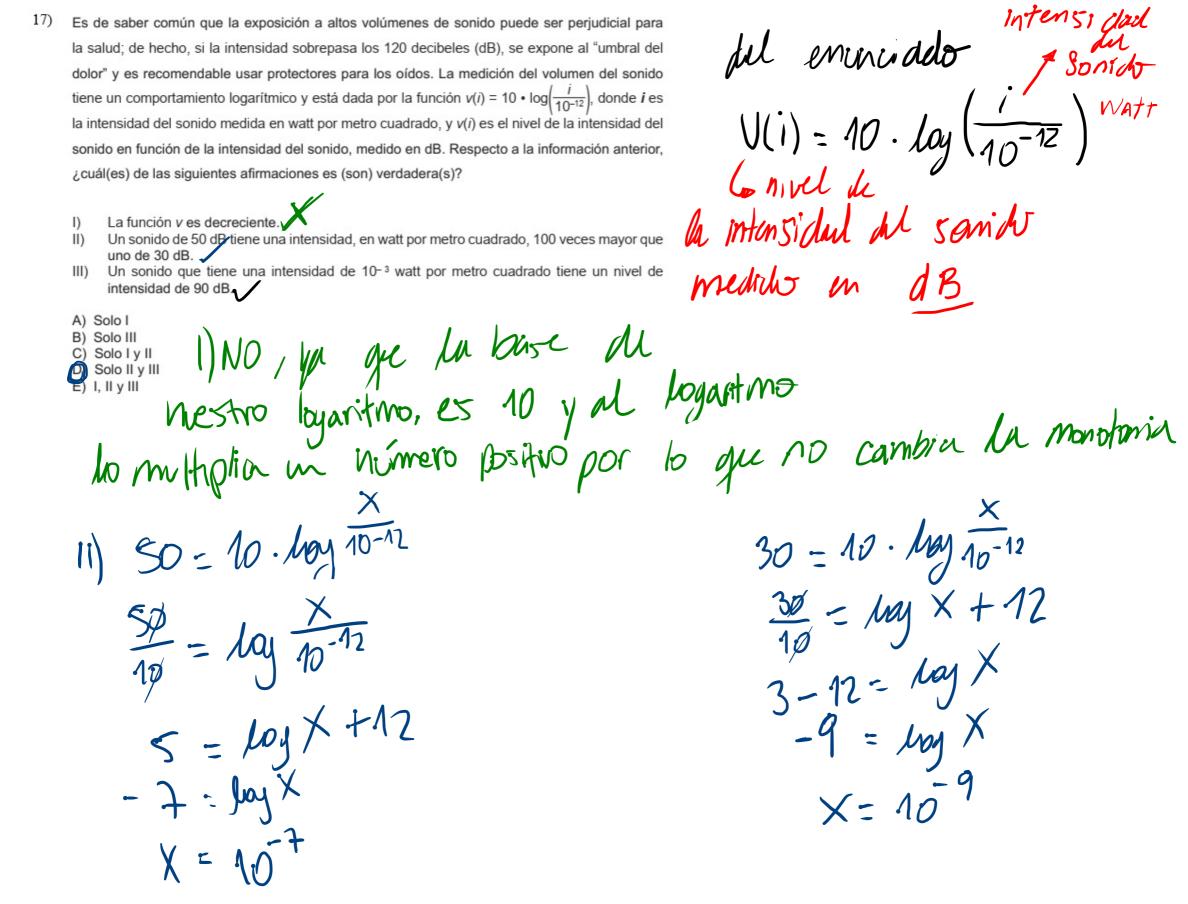
$$\log \frac{x}{50} = t \log 1.1^{t}$$

$$(\mathcal{E})$$

tenanos que despezar t

$$\frac{\log x}{\log 1.1} = \pm$$

t representation en terminos de



Por lo tunto
Sonido Intensidad
SodB 10-7
30dB 10-9

111) $V(i) = 10 \cdot log \frac{10^{-3}}{10^{-11}}$ $V(i) = 10 \cdot log 10^{9}$ $V(i) = 10 \cdot 9 \cdot log 10^{9}$ $V(i) = 10 \cdot 9 \cdot log 10^{9}$ $V(i) = 10 \cdot 9 \cdot 10^{9}$ $V(i) = 10 \cdot 9 \cdot 10^{9}$ 10^{-4} . $100 = 10^{-7}$ por lotunto 10^{-7} si es 100 mayor que 10^{-9}

-3-(-12) -3+12 9

Correcta

- A) 62
- B) 32
- (C) 4
- D) 1
- E) $\frac{1}{4}$

$$log_{4} \times +2 = log_{4} = 64$$
 $log_{4} \times +2 = 3$
 $log_{4} \times = 3-2$
 $log_{4} \times = 1$
 $\chi = 4$

C)

19) La solución de la ecuación
$$\log_5 (x-4) + \log_5 x = 1$$
 es

C)
$$\frac{-2}{3}$$

$$\log_s(x-4) + \log_s x = 1$$

$$loy_5 \times (X-4) = 1$$

$$X(X-4) = S$$

$$x^2 - 4x - 5 = 0$$

$$(x-5)(x+1)=0$$

X₁=S } X₂ no since ya que el X₂=-1) argumento no prede

$$\frac{2}{5}$$

- C) 3
- D) 40
- E) $\frac{1}{4}$

$$l_{y} \times +1 = l_{0} \times 4$$
 $l_{0} \times + l_{0} \times +10 = l_{0} \times 4$
 $l_{0} \times +10 \times 4$

aneta B

Sean
$$f y g$$
 dos funciones reales tales que $f(x) = 2 \cdot \log x$ y $g(x) = \log \left(\frac{x}{10}\right) + 3$. ¿Para que valor de x se cumple que $f(x) = g(x)$?

$$\begin{array}{c} \text{Loy} & \frac{3x}{10} \\ \text{Loy} & \frac{3}{10} \times \frac{x}{10} \\ \text{Loy} & \frac{x}{10} \end{array}$$

$$f(x) = g(x)$$

$$2 \cdot \log x = \log \left(\frac{x}{10}\right) + 3$$

$$\log x^{2} = \log \frac{x}{10} + \log 1000$$

$$\log x^{2} = \log \frac{1000x}{10}$$

$$\log x^{2} = \log 1000x$$

$$\log x^{2} = \log 1000x$$

$$\chi^{2} = \log 1000$$

lay de it mos

I guales

Aryunautus

I yvales

Si
$$\log \left(\frac{1}{1-x} \right) = 2$$
, entonces el valor de $100x$ es

- A) 99
- B) $\frac{-101}{100}$
- C) $\frac{-99}{100}$
- D) 99 100
- E) 9

Orrecta

$$hy(\frac{1}{1-x}) = 2$$

$$hy(1-x)^{-1} = hy 100$$

$$(1-x)^{-2} = 100$$

$$\frac{1}{1-x} = 100$$

$$1 = 100 - 100 \times 1$$

$$-99 = 100 \times 1$$

$$91 = 100 \times 1$$

- A) 0
- B) $\frac{1}{10}$
- $\binom{3}{4}$
- D) 1
- E) 12

lay 2 + loy 4 + lay X = loy b

log 2.4. X = lag b

loy 8x = lay b

$$X = \frac{6}{8}$$

$$X = \frac{3}{4}$$

Carecta (C)

Si
$$\log_3 (2x + 1) - 3 = \log_3 (7x - 3) - 1$$
, ¿cuál de las siguientes opciones corresponde al valor más cercano a \mathbf{x} ?

- A) 2,21
- B) 2,01
- C) 0,46
- D) 2,16
- E) 0,45

$$ly_{3}(2x+1)-3 = ly_{3}(7x-3)-1$$

$$ly_{3}(2x+1) = ly_{3}(7x-3)+2$$

$$ly_{3}(2x+1) = 2$$

$$ly_{3}(2x+1) = 2$$

$$ly_{3}(7x-3) = 2$$

$$9(7\times -3) = 2\times +1$$

 $63\times -27 = 2\times +1$
 $61\times =28$

$$61 \times = 28$$

$$X = \frac{28}{61}$$

$$289/61 = 0,459$$
360
550

Correcta (C)

Si
$$\log \left(\frac{x}{1-x} \right) = \log \left(\frac{2}{x-1} \right)$$
, entonces se puede concluir que x

- A) es igual a 0.
- B) puede tener distintos valores.
- C) es igual a 2.
- D) es igual a 2.
 - no tiene valores que cumplan la igualdad.

$$lay\left(\frac{x}{1-x}\right) = lay\left(\frac{2}{x-1}\right)$$

$$\frac{x}{1-x} = \frac{2}{x-1}$$

$$x(x-1) = 2(1-x)$$

$$x^{2}-x = 2-2x$$

$$x^{2}+x-2=0$$

$$x+2)(x-1)=0$$

$$\chi_1 = -2$$

con x=1 en el primer miembro de la igualdad la fraccion se indetermina. Con x=2 en el segundo mienbro el argumento da negativo, por lo que no se puede.

Asi ninguno de los valores cumplen la igualdad.

$$698X = 301$$

$$X = \frac{301}{698}$$

$$3010 \div 698 = 0,4$$

$$2180$$

$$2180 : 698 = \frac{498}{3490}.5$$

3 3 6 4 7 . 4