PODEMOS EMPAREJAR, uno por uno, los números enteros con los números pares, sin que ninguno de ambos conjuntos llegue a agotarse. Por consiguiente, aunque pueda parecer que hay más números enteros que números pares, ambos conjuntos tienen en realidad el mismo número de elementos. Muchos otros conjuntos, como el de los cuadrados perfectos multiplicados por mil millones pueden también ser biunívocamente comparados con los números enteros. Tales conjuntos se llaman "numerables".
CONJUNTO INFINITO de los números racionales: es decir, de los números expresables como cociente de dos números enteros. Puede parecer mucho mayor que el conjunto de los números enteros. Por ejemplo, entre dos enteros consecutivos, así 0 y 1, hay una infinidad de números racionales. No obstante, Cantor mostró en el año 1874 de qué forma podían los números racionales ser emparejados biunívocamente con los números enteros. Cada número racional se halla encuadrado en la formación de la figura; a cada número racional puede entonces asociársele un número entero conforme se va recorriendo la trayectoria señalada con flechas de color. Así pues, el conjunto de los números racionales es numerable.
CONJUNTO DE LOS NÚMEROS REALES, representado por el continuo de los puntos de una recta; dicho conjunto no es numerable. Si lo fuera, los números reales entre 0 y 1, por ejemplo, podrían ser biunívocamente emparejados, uno a uno, con los números enteros. Cada número real de la lista está representado por un número decimal ilimitado. (Los decimales infinitos como 0,5000... han de ser representados por otro decimal infinito, tal como 0,4999...) Independientemente de la ordenación que se dé a una tal lista de números decimales ilimitados, siempre puede ser construido un nuevo decimal que defina un número real no contenido en ella: como primera cifra decimal del número a construir se escribe un 9 si es que el primer decimal del número que encabeza la lista es un 1; de no ser así, se escribe un 1. A continuación se cambia la segunda cifra decimal del segundo número real; después, la tercera del tercero, y así sucesivamente. El número decimal de esta forma construido representa un número real comprendido entre 0 y 1, y que habrá forzosamente de diferir al menos en una cifra decimal de cada uno de los números de la lista. Por tanto, la hipótesis de que los números reales puedan ser biunívocamente emparejados con los números enteros conduce a contradicción. La idea clave de esta demostración es conocida por "método de diagonalización".